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1 Département SM, Centre Universitaire de BBA, Algeria
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Abstract
The backscattering coefficients (BSCs) for semi-infinite solids of normally incident 1–4 keV
electrons and positrons are stochastically modeled and calculated by the Monte Carlo method.
This paper aims at discussing the differences observed between the properties of electrons and
positrons impinging on solid targets based on the use of the differential elastic scattering
cross-section which has been obtained using the Bentabet and Bouarissa approximation (2006
Phys. Lett. A 355 390). A new mathematical equation was developed for the adjustable
parameter β of the Bentabet et al approximation and seems to be valid for other elements. Both
electron and positron BSC simulated results show good agreement with the experimental or
computed data reported by other authors.

1. Introduction

Electron– and positron–material interaction has a great
importance in many domains of analytical techniques
such as electron probe microanalysis, Auger electron
spectroscopy, positron annihilation spectroscopy, scanning
electron microscopy (SEM) etc [1–10]. The Monte Carlo
method has become a powerful tool for carrying out such
study. The Monte Carlo programs used in the models of the
electron and positron implantation profile were developed first
by Valkealahti and Nieminen [11, 12], Adesida et al [13],
Jensen and Walker [4, 6], Fernandez-Varea et al [14] and
Lynn and McKeown [15]. All these programs have a similar
structure. The accuracy of the model which is used depends on
the modeling of scattering processes included in the study of
the projectile particle–material interaction. The most dominant
interactions are the elastic and inelastic processes. Among
the most successful methods in determining the electron and
the positron elastic cross-sections is the RPWEM (relativistic
partial wave expansion method) [16, 17]. However, the
projection in the Monte Carlo code requires a very long time
compared to analytical expressions.

The model that we have used in this study is similar
to that explained in our articles published recently [19–23]
using the Bentabet et al approximation to calculate the elastic
differential cross-section [21]. This approximation is an

analytical expression with an adjustable parameters compared
to RPWEM.

In the present work, we have calculated the BSC for
semi-infinite solid targets of the following samples: Al (light
element), Au (heavy element) and Cu (intermediate element) in
the energy range (0.1–4 keV). This latter BSC is a major factor
to validate the model used in the simulation and highlights
the absorbed rate of incident particles [18]. Backscattered
electrons (positrons) are the particles of an electron (positron)
beam that return and emerge from a target surface when the
beam impinges on a solid.

In the present work, we have almost explained the majority
of differences observed between the electron BSC and the
positron BSC, in the solid, referring to the exp(α − βθ) term
of the Bentabet et al approximation. In addition, an analytical
expression relating to the β parameter has been developed
and could be generalized for other solids. Moreover, results
obtained are in agreement with those of the literature.

2. Method

The elastic differential cross-sections which are used to
describe the interaction of both electrons and positrons
with solid targets are calculated with the same method of
approximation as explained in [21]. This approximation
suggests that the elastic differential cross-section can be
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written in the following form:
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where α and β are two adjustable parameters which depend
on the characteristics of the studied material and the kinetic
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where σ(E) is the total cross-section obtained by the
relativistic partial wave expansion method (RPWEM) which
was reported by Dapor [26].

The use of the Bentabet et al approximation is tested,
to study the electron (positron) transport in a solid target,
for energies lower than or equal to 4 keV either by
using an analytical method [22, 23] like that developed by
Vicaneck and Urbassek [24] or the stochastic Monte Carlo
method [21–23, 25]. In addition, the analytical expression
(equation (1)) could be valid for higher energies. However,
the determination method of the beta parameter, particularly in
the electron case, must be changed due to the influence of the
particle energy and the relativistic effects on the elastic cross-
section.

The core and the valence electron excitations are described
using Gryzinski’s excitation function [27–29]. The Gryzinski’s
differential cross-section is given by the following expression:
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where �E, EB and E are the energy loss, the mean electron
binding energy and the primary projectile energy respectively.

The total inelastic cross-section is given as
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where NS is the number of electrons in a particular ‘shell’
contributing to the inelastic events.

The energy loss is taken equal to zero if it is less than the
mean binding energy of an electron of the target atom.

It should be noted that Gryzinski’s model focuses on
the difference between core and valence electron interactions.
Consequently, one can get more information on the
contribution of each type of collision. However, several other
models neglected the core electron contribution or introduce
it in a total expression reflecting the inelastic effect—mean
free path, stopping power, inelastic cross-section, etc, like
Bethe theory [30], Kanaya and Okayama’s semi-empirical

formula [31], Penn’s model [32], Ashley’s optical model [33],
etc.

Although it is in some cases sufficient to treat the inelastic
scattering of charged particles in a continuous slowing down
approximation [34], the most accurate Monte Carlo method
describes both elastic and inelastic scattering as discrete
events [35].

These electrons (positrons) are not reflected without
dissipation of energy because of their penetration below
the surface and the resulting loss of small amounts of
energy through ionization, electron excitations and plasmon
emissions. A fraction of the energy is in fact lost in the
solid before emerging [51]. The plasma oscillations could
be considered as quantified particles named plasmons. The
plasmon energy is about 15.3 eV in aluminum and 14.07 eV
in Au. Generally, this latter effect could be neglected in
equilibrium metal.

3. Computation

The Monte Carlo method has also been used to study
the charged particle transportation in bulk solid targets by
identifying the trajectories followed by the incident particle.
The electrons as well as the positrons since their penetration
through the external surface to the end of their history will be
defined by one of the following three cases.

If the incident particle loses its energy through the inelastic
process inside the solid target to the point that its energy is
inferior or equal to 100 eV then it is an absorbed particle. If it
retreats from the same surface through which it penetrated then
it is a backscattered particle and if it crosses the film thickness
then it is a transmitted particle. The Monte Carlo method uses
uniform random numbers belonging to the interval [0–1]. In
the simulation, five random numbers were used to study the
trajectories of the electrons or positrons in the solid target.
Briefly, the Monte Carlo program uses five random numbers,
namely R1, R2, . . . , R5 for identifying random events that
contribute to the transport model: the type of collision, either
elastic or inelastic (either with core electrons or valence
electrons), the distance between the two successive collisions,
the diffusion angle after an elastic collision, the energy loss in
the case of an inelastic collision, and the azimuthal angle after
every collision either elastic or inelastic. The random numbers
R1, R2, . . . , R5 are introduced as follows.

• The distance between the two successive collisions named
(S) is calculated as follows:

S = −λT ln (R1) , (5)

where λT is the total mean free path given as

1

λT
= 1

λel
+ 1

λc
+ 1

λv
, (6)

where λel, λc and λv are the mean free paths, elastic
and inelastic of core electrons and inelastic of valence
electrons respectively.
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Table 1. The parameter β of the Bentabet and Bouarissa approximation. (Note: E (keV) is the primary energy.)

β(rad−1) case

Particle β constant β versus energy (keV)

Al Electron 0.36 −0.085 + 0.47E − 0.09E 2

Positron 1.782 1.332 + 0.736 exp(−(103 E − 671.386)/2100.382)

Cu Electron 0.64 −0.43 + 1.1E − 0.20E2

Positron 2.697 1.992 + 0.852 exp(−(103 E − 1285.836)/1257.825)

Au Electron 1.09 −1.46 + 2.59E − 0.45E 2

Positron 3.523 0.708 + 4.3E − 1.726E2 + 0.2138E3

• The type of collision is defined as follows.
If

R2 � 1/λel

1/λT
(7)

the collision is elastic.
If

1/λel

1/λT
< R2 � 1/λel + 1/λc

1/λT
(8)

the collision is inelastic with the core electrons.
If

R2 >
1/λel + 1/λc

1/λT
(9)

the collision is inelastic with the valence electrons.
• The diffusion angle after every elastic collision is given as

R3 =
∫ θ

0
dσ
d�

d�

σel
. (10)

• The energy loss after every inelastic collision is given as

R4 =
∫ E
�E

dσinel
d(�E)

d(�E)

σinel
. (11)

• The azimuthal angle is given as

R5 = ϕ

2π
. (12)

Diffusion angle after an inelastic collision is expressed by
the expression of binary collision model given as follows:

θ = arcsin

(√

�E

E

)

. (13)

In our simulation the termination energy was chosen to be
100 eV. The choice of the termination energy does not have
much effect, since the path length traveled by the electron
between 100 eV and near thermal energies is insignificant (a
few angstroms) compared to the implantation depths [35–37].

Phonon scattering does not contribute to the projected
ranges but will gradually lead to the random walk blurring of
the implantation profile. As the particles will eventually start
to diffuse around the endpoints of their trajectories, as phonon
scattering becomes weaker at low temperatures, the blurring
effect (and the diffusion constant) becomes larger [11].

In the case of the Monte Carlo method the statistical error
is calculated as 1/

√
N , where N is the number of initial

particles. Since 105–106 particle histories were used, this
statistical error is found to be about 0.1%.

Table 2. Backscattering coefficients (BSCs) of 1–4 keV electrons
impinging on semi-infinite Al, Cu and Au: present calculation
(PW [21]) compared to theoretical [20, 26] and the experimental data
estimated from the curves reported in [38]. (Note: PW1, present
work in the β constant case; PW2, present work in the β versus
energy case.)

E (keV)

1 2 3 4

Aluminum PW1 0.185 0.176 0.172 0.172
PW2 0.192 0.165 0.152 0.167
Exp. [38] 0.175 0.170 0.165
Reference [20] 0.195 0.180 0.176 0.164
Reference [26] 0.197 0.187 0.181 0.178

Copper PW1 0.292 0.293 0.296 0.296
PW2 0.313 0.269 0.238 0.272
Exp. [38] 0.3 0.30 0.3
Reference [20] 0.329 0.325 0.307 0.29
Reference [26] 0.315 0.314 0.312 0.312

Gold PW1 0.331 0.382 0.413 0.432
PW2 0.36 0.332 0.272 0.378
Exp. [38] 0.375 0.410 0.430
Reference [26] 0.331 0.390 0.414 0.427

4. Results and discussion

The following results have been obtained for a normal
incidence and energies lower than or equal to 4 keV electrons
and positrons.

In the case of a semi-infinite solid, crossed by a slow
particle of low energy; the BSC is the probability for a
retreating incident particle from the crossed solid. This
means that the diffusion angle of the particle is more than
90◦. In the present work, we have used Bentabet’s et al
approximation [21], using the β parameter like a constant
and then dependent on energy. The choice between the
two situations will be closely connected to the experimental
database. We have used BSC experimental data like a criterion
of validation. Table 1 presents the parameter β for both cases:
β constant and β versus the energy E expressed in keV.

Tables 2 and 3 represent the BSC of electrons and
positrons impinging on the aluminum, copper and gold
respectively. The results for the electron case have been already
discussed in a previous paper [21].

In the positron case one can note when β dependent on
energy experimental data are close to those of β constant.
Indeed, this energy dependence is very useful to explain the
BSC increases in the Al case despite the weakness of the
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Table 3. Backscattering coefficients (BSCs) of 1–4 keV positrons
impinging on semi-infinite Al, Cu and Au: present calculation (PW)
compared to theoretical [39–41] and the experimental data [39].
(Note: PW1, present work in the β constant case; PW2, present work
in the β versus energy case.)

E (keV)

1 2 3 4

Aluminum PW1 0.088 0.085 0.089 0.092
PW2 0.080 0.089 0.092 0.097
Exp. [39] 0.069 0.086
Reference [39] 0.109 0.115
Reference [40] 0.104 0.115
Reference [41] 0.118 0.123

Copper PW1 0.147 0.156 0.157 0.169
PW2 0.130 0.166 0.183 0.202
Exp. [39] 0.135 0.177
Reference [39] 0.156 0.194
Reference [40] 0.152 0.188
Reference [41] 0.122 0.138

Gold PW1 0.129 0.189 0.234 0.266
PW2 0.1335 0.157 0.212 0.256
Exp. [39] 0.123 0.186
Reference [39] 0.168 0.242
Reference [40] 0.165 0.232
Reference [41] 0.179 0.239

cross-section. Meanwhile, we can also explain the behavior
difference between Cu and Au BSCs for lower energies. The
BSC either for electrons or positrons increases from aluminum
to copper then to gold. In other words, it can be noted
that the BSC of electrons and positrons accordingly increases
with the atomic number. The aforementioned fact is justified
by the increase of the atomic number, which leads to the
increase of the mass density and the elastic cross-sections
except for few elements. The BSC increase according to the
atomic number has already been proved theoretically as well
as experimentally by several authors: Coleman et al [39],
Ghosh and Aers [41], Mäkinen et al [18], Sempau et al [42],
Aydin [45], Dapor ([43, 44], particularly for primary energies
superior to 2 keV). In addition, the BSC of electrons increases
with the energy in heavy materials such as gold, decreases in
the case of light materials such as aluminum and varies slowly
in the intermediate materials such as copper. This can be
justified by the fact that heavy atoms have big cross-sections
and consequently there is a great probability of diffusion by
large angles, in contrast to the case of light materials.

However, in the positron case, BSC increases in a
monotonic way with the incident energy, this is justified as
follows.

For gold, it is justified by the same argument as mentioned
in the case of electrons, i.e. gold atoms have big cross-
sections and consequently a great probability of diffusion by
large angles. On the other hand, one can justify the BSC
behavior versus energy in aluminum and copper cases: the
energy increases lead to a decrease of β (see figure 1) and
consequently to an increase in the diffusion probability by large
angles. Also, the BSC for copper is greater than for gold for
some energies (see table 3) although the gold mass density is
greater than copper, shown by the β oscillations in the gold

Figure 1. The parameter β versus the incident energy positrons.

case (figure 1). Moreover, the BSC for electrons is greater
than for positrons due to the fact that the diffusion probability
by small angles is larger compared to electrons and positrons
could deepen more inside the solid target.

Thus, the only term which made a difference between
electron and positron BSC in the simulation is exp(α − βθ)

which is related to the differential elastic cross-section and
consequently to the mean free path, the collision type, the
distance covered between two successive collisions etc.

One can note that Bentabet’s et al approximation is
an extension of the formula developed theoretically by
Seltzer [46] and given by

dσ

d�
= z2r 2

0

(

1 − γ 2
)

γ 4(1 − cos θ + 2βn)
Krel(θ, E), (14)

where z2r 2
0

(1−γ 2)

γ 4(1−cos θ+2βn)
is the screened Rutherford cross-

section and Krel(θ, E) is the spin-relativistic factor chosen in
the Bentab et al approximation as exp(α−βθ); Z is the atomic
number of the considered element; r0 is the classical electron
radius (2 817 938 × 10−13 cm); γ is the ratio of the initial
electron velocity to the velocity of light (γ = v/c); θ is the
scattering angle; βn is the screening parameter.

Among approximations used to determine Krel(θ, E),
Aydin’s [47–49] is given by

Krel(θ, E) =
3∑

i=0

pi (E) θ i (15)

θ is the scattering angle and pi(E) is a free parameter which
depends on the energy. This latter (pi(E)) is generally
expressed in a polynomial form containing three to four free
parameters. Consequently, equation (15) gives from 12 to
16 free parameters in order to evaluate the expression of
Krel(θ, E). However, the Bentabet et al approximation is very
useful for this study: on the one hand, it explains the difference
of the behavior between positrons and electrons impinging on
the solid. On the other hand, it depends only on one parameter
to determine (β).

Indeed, the β parameter value is closely equal to 0.36,
0.64 and 1.097 (respectively in Al, Cu and Au). The value

4



J. Phys.: Condens. Matter 21 (2009) 095403 A Bentabet and N Fenineche

Table 4. Backscattering coefficients (BSCs) of 1–4 keV electrons
impinging on semi-infinite Be, Si, Ge and Ag.

E (keV) Be Si Ge Ag

1 0.071 0.225 0.291 0.315
2 0.058 0.215 0.306 0.352
3 0.052 0.208 0.307 0.360
4 0.052 0.20 0.309 0.365

of β seems to be correlated to the mass density (ρ) and atomic
number (Z ) by the following equation:

β (Z , ρ) = exp(−2.0769 + 0.2952 ln(ρZ)), (16)

where ρ is the mass density (g cm−3) of the studied element.
To test the validity of this equation for other elements

(metals and semiconductors), we have calculated the BSC
according to primary energy of the electrons in Be, Si, Ge and
Ag and results are presented in table 4. Our results agreed
with those of the literature (experimental and theoretical;
see [26, 42–50] and references therein).

5. Conclusion

In conclusion, we have calculated the BSCs of electrons
and positrons backscattered from Al, Cu and Au by using
the Monte Carlo simulation method. Therefore, comparing
the results with the experimental values we can deduce that
the β parameter of the approximation must be constant and
independent of energy in the electron case. This parameter
was equal to 0.36, 0.64 and 1.09 in the Al, Cu and Au
cases and also where the value of β is correlated to the
mass density and atomic number by the relation β(Z , ρ) =
exp(−2.0769 + 0.2952 ln(ρZ)). In the positron case one
can note that when β is dependent on energy it seems to
be closer to the experimental data compared to β constant.
Indeed, this energy dependence is very useful to explain the
BSC increase in the Al case despite the weakness of the
cross-section. Meanwhile, we can also explain the behavior
difference between the Cu and Au BSC for lower energies.
When analyzing the obtained results and the experimental
database we can note that obviously the results are in good
agreement with the experimental results regarding those found
by other authors, which proves the validity of the model.
Moreover, the results show the efficiency of the approximation
when we study the transport of both electrons and positrons.
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